Himanshu Buckchash,
Momojit Biswas,
Rohit Agarwal,
Dilip Kumar Prasad
:
Hedging Is Not All You Need: A Simple Baseline for Online Learning Under Haphazard Inputs
Ronny Paul,
Himanshu Buckchash,
Shantipriya Parida,
Dilip Kumar Prasad
:
Towards a More Inclusive AI: Progress and Perspectives in Large Language Model Training for the Sámi Language
Nirwan Banerjee,
Samir Malakar,
Ludwig Alexander Horsch,
Dilip Kumar Prasad
:
GUNet++: guided-U-Net-based compact image representation with an improved reconstruction mechanism
Optical Society of America. Journal A: Optics, Image Science, and Vision (JOSA A) 2024
DOI
Ayush Somani,
Ludwig Alexander Horsch,
Ajit Bopardikar,
Dilip Kumar Prasad
:
Propagating Transparency: A Deep Dive into the Interpretability of Neural Networks
Hui Xue,
Øyvind Haugseggen,
Johan-Fredrik Røds,
Bjørn-Morten Erdal Batalden,
Dilip Kumar Prasad
:
Assessment of stress levels based on biosignal during the simulator-based maritime navigation training and its impact on sailing route reliability
Transportation Research Interdisciplinary Perspectives (TRIP) 2024
ARKIV /
DOI
Gauri Arora,
Ankit Butola,
Ruchi Rajput,
Rohit Agarwal,
Krishna Agarwal,
Ludwig Alexander Horsch
et al.:
Taxonomy of hybridly polarized Stokes vortex beams
Momojit Biswas,
Himanshu Buckchash,
Dilip Kumar Prasad
:
pNNCLR: Stochastic pseudo neighborhoods for contrastive learning based unsupervised representation learning problems
Pragyan Banerjee,
Shivam Milind Akarte,
Prakhar Kumar,
Muhammad Shamsuzzaman,
Ankit Butola,
Krishna Agarwal
et al.:
High-resolution imaging in acoustic microscopy using deep learning
Machine Learning: Science and Technology 2024
ARKIV /
DOI
Samir Malakar,
Nirwan Banerjee,
Dilip Kumar Prasad
:
Compact representation for memory-efficient storage of images using genetic algorithm-guided key pixel selection
Engineering Applications of Artificial Intelligence 2024
ARKIV /
DOI
Ayush Singh,
Yash Bhambhu,
Himanshu Buckchash,
Deepak Kumar Gupta,
Dilip Kumar Prasad
:
Latent Graph Attention for Spatial Context in Light-Weight Networks: Multi-Domain Applications in Visual Perception Tasks
Ayush Somani,
Pragyan Banerjee,
Manu Rastogi,
Anowarul Habib,
Krishna Agarwal,
Dilip Kumar Prasad
:
Image Inpainting With Hypergraphs for Resolution Improvement in Scanning Acoustic Microscopy
IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) 2023
ARKIV /
FULLTEKST /
DOI
Ayush Singh,
Yash Bhambhu,
Himanshu Buckchash,
Deepak Gupta,
Dilip Kumar Prasad
:
Latent Graph Attention for Enhanced Spatial Context
Rohit Agarwal,
Dilip Kumar Prasad,
Ludwig Alexander Horsch,
Deepak Kumar Gupta
:
Aux-Drop: Handling Haphazard Inputs in Online Learning Using Auxiliary Dropouts
Transactions on Machine Learning Research (TMLR) 2023
ARKIV
Rohit Agarwal,
Gyanendra Das,
Saksham Aggarwal,
Ludwig Alexander Horsch,
Dilip Kumar Prasad
:
Mabnet: Master Assistant Buddy Network With Hybrid Learning for Image Retrieval
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing 2023
ARKIV /
DOI
Momojit Biswas,
Himanshu Buckchash,
Dilip Kumar Prasad
:
pNNCLR: Stochastic Pseudo Neighborhoods for Contrastive Learning based Unsupervised Representation Learning Problems
Abhinanda Ranjit Punnakkal,
Suyog Sakhahari Jadhav,
Krishna Agarwal,
Ludwig Alexander Horsch,
Dilip Kumar Prasad
:
MiShape: 3D Shape Modelling of Mitochondria in Microscopy
Rohit Agarwal,
Ludwig Alexander Horsch,
Dilip Kumar Prasad
:
Modelling Irregularly Sampled Time Series Without Imputation
Rohit Agarwal,
Ankit Butola,
Ludwig Alexander Horsch,
Dilip Kumar Prasad,
Krishna Agarwal
:
Taxonomy of hybridly polarized Stokes vortex beams
Nirwan Banerjee,
Samir Malakar,
Deepak Kumar Gupta,
Ludwig Alexander Horsch,
Dilip Kumar Prasad
:
Guided U-Net Aided Efficient Image Data Storing with Shape Preservation
Pragyan Banerjee,
Sibasish Mishra,
Nitin Yadav,
Krishna Agarwal,
Frank Melandsø,
Dilip Kumar Prasad
et al.:
Image inpainting in acoustic microscopy
Abhinanda Ranjit Punnakkal,
Gustav Godtliebsen,
Ayush Somani,
Sebastian Andres Acuna Maldonado,
Åsa birna Birgisdottir,
Dilip K. Prasad
et al.:
Analyzing Mitochondrial Morphology Through Simulation Supervised Learning
Journal of Visualized Experiments 2023
ARKIV /
DOI
Sunil Bhatt,
Ankit Butola,
Anand Kumar,
Pramila Thapa,
Akshay Joshi,
Suyog S. Jadhav
et al.:
Single-shot multispectral quantitative phase imaging of biological samples using deep learning
Gustav Godtliebsen,
Kenneth Bowitz Larsen,
Zambarlal Babanrao Bhujabal,
Ida Sundvor Opstad,
Mireia Nager Grifo,
Abhinanda Ranjit Punnakkal
et al.:
High-resolution visualization and assessment of basal and OXPHOS-induced mitophagy in H9c2 cardiomyoblasts
Zicheng Liu,
Mayank Roy,
Dilip K. Prasad,
Krishna Agarwal
:
Physics-Guided Loss Functions Improve Deep Learning Performance in Inverse Scattering
IEEE Transactions on Computational Imaging 2022
ARKIV /
DOI
Chen Xie,
Deepu Rajan,
Dilip K. Prasad,
Chai Quek
:
An embedded deep fuzzy association model for learning and explanation
Applied Soft Computing 2022
DOI
Xinqiang Chen,
Xingyu Wu,
Dilip K. Prasad,
Bing Wu,
Octavian Postolache,
Yongsheng Yang
:
Pixel-Wise Ship Identification From Maritime Images via a Semantic Segmentation Model
IEEE Sensors Journal 2022
DOI
S Chattopadhyay,
Antoni Malachowski,
Jaya Kumari Swain,
Roy Ambli Dalmo,
Alexander Horsch,
Dilip K. Prasad
:
Mapping Functional Changes in the Embryonic Heart of Atlantic Salmon Post Viral Infection Using AI Technique
Proceedings of IEEE International Conference on Image Processing 2022
DOI
Ayush Somani,
Arif Ahmed Sekh,
Ida Sundvor Opstad,
Åsa birna Birgisdottir,
Truls Myrmel,
Balpreet Singh Ahluwalia
et al.:
Virtual labeling of mitochondria in living cells using correlative imaging and physics-guided deep learning
Biomedical Optics Express 2022
ARKIV /
DOI
Sumit Rai,
Arti Kumari,
Dilip K. Prasad
:
Client Selection in Federated Learning under Imperfections in Environment
Huixu Dong,
Jiadong Zhou,
Chen Qiu,
Dilip K. Prasad,
I-Ming Chen
:
Robotic Manipulations of Cylinders and Ellipsoids by Ellipse Detection With Domain Randomization
IEEE/ASME transactions on mechatronics 2022
DOI
Divij Singh,
Ayush Somani,
Alexander Horsch,
Dilip K. Prasad
:
Counterfactual Explainable Gastrointestinal and Colonoscopy Image Segmentation
IEEE International Symposium on Biomedical Imaging 2022
ARKIV /
DOI
Deepa Joshi,
Ankit Butola,
Sheetal Raosaheb Kanade,
Dilip K. Prasad,
Mithra Amitha Mithra,
N.K. Singh
et al.:
Label-free non-invasive classification of rice seeds using optical coherence tomography assisted with deep neural network
Optics and Laser Technology 2021
ARKIV /
DOI
Soham Chattopadhyay,
Laila Zary,
Chai Quek,
Dilip K. Prasad
:
Motivation detection using EEG signal analysis by residual-in-residual convolutional neural network
Expert Systems With Applications 2021
ARKIV /
DOI
S.W Jun,
Arif Ahmed Sekh,
Chai Quek,
Dilip K. Prasad
:
seMLP: Self-evolving Multi-layer Perceptron in Stock Trading Decision Making
Ratnabali Pal,
Arif Ahmed Sekh,
Debi Prosad Dogra,
Samarjit Kar,
Partha Pratim Roy,
Dilip K. Prasad
:
Topic-based Video Analysis: A Survey
Q.E. Zhe,
Arif Ahmed Sekh,
Chai Quek,
Dilip K. Prasad
:
Recurrent Self-evolving Takagi–Sugeno–Kan Fuzzy Neural Network (RST-FNN) based Type-2 Diabetic Modeling
Pranab Kanti Roy,
Hiranmoy Mondal,
Ashis Mallick,
Dilip K. Prasad
:
Inverse and efficiency of heat transfer convex fin with multiple nonlinearities
Arif Ahmed Sekh,
Ida Sundvor Opstad,
Gustav Godtliebsen,
Åsa Birna Birgisdottir,
Balpreet Singh Ahluwalia,
Krishna Agarwal
et al.:
Physics-based machine learning for subcellular segmentation in living cells
Nature Machine Intelligence 2021
ARKIV /
DOI
Jeow Li Huan,
Arif Ahmed Sekh,
Chai Quek,
Dilip K. Prasad
:
Emotionally charged text classification with deep learning and sentiment semantic
Neural Computing & Applications 2021
ARKIV /
DOI
Hui Xue,
Bjørn-Morten Batalden,
Puneet Sharma,
Jarle André Johansen,
Dilip K. Prasad
:
Biosignal-Based Driving Skill Classification Using Machine Learning: A Case Study of Maritime Navigation
Ayush Somani,
Arif Ahmed Sekh,
Ida Sundvor Opstad,
Åsa Birna Birgisdottir,
Truls Myrmel,
Balpreet Singh Ahluwalia
et al.:
Digital Staining of Mitochondria in Label-free Live-cell Microscopy